

Année universitaire : 2019/2020

Option; Master2 (ESEM) Enseignant: Y. BRIK Matière: Vision artificielle

Questions de cours : (7 pts) (Questions 1- $4 \rightarrow 01$ point chaque / les autres $\rightarrow 0.5$ chaque)

- 1. Quelles sont les limitations d'un système visuel humain par rapport au système visuel artificiel ?
- 2. Quelle est la différences entre le traditional programming et le machine learning ?
- 3. Lorsque on décale horizontalement un histogramme, le contraste ou la luminance qui sera modifiée ?
- 4. Citer deux techniques pour améliorer le contraste d'une image?
- 5. Citer un avantage et un inconvénient d'un filtre fréquentiel passe-haut ?
- 6. Quelle est la différences entre l'échantillonnage et la quantification des images numériques ?
- 7. Le filtre médian est un filtre non linéaire, oui non?
- 8. L'opérateur *LoG* = filtre gaussien + la première dérivée de l'image, oui _____ non _____?
- 9. L'extraction d'un contour nécessite toujours l'estimation de gradient, oui non non
- 10. Quel est l'effet d'un filtrage par la matrice de convolution suivante ?

est reflet d'un mitrage par la matrice de convolution	Buiv	ante	•
Un flou	0	0	0
Un éclaircissement	0	1	0
Aucun effet (image inchangée)	0	0	0

Exercice 01 : (10 pts)

Soit l'image I à niveaux de gris (codée sur 4 bits) de taille 11×10 pixels.

- 1- Définir le contraste et calculer sa valeur dans cette image *I*?
- 2- Tracer l'histogramme de l'image *I*?
- 3- Binariser l'image *I* de façon à séparer l'emoji (visage souriant) du fond ? donner la valeur de seuil *S* et représenter l'image binaire *Ib* ?
- 4- Un bruit est ajouté à l'image \boldsymbol{I} tel que:

$$I(2,2)=0$$
, $I(10,10)=15$, $I(8,4)=0$, $I(6,9)=15$

- 4.1- Quel est le type de ce bruit ?
- 4.2- Appliquer un filtre moyenneur (équitable) et un filtre médian de taille 3x3 sur les pixels bruités ?

12	12	12	12	12	12	12	12	12	12
12	9	9	2	2	2	2	9	9	12
12	9	2	7	7	7	7	2	9	12
12	2	7	4	4	4	4	7	2	12
12	2	7	2	4	4	2	7	2	12
12	2	7	4	4	4	4	7	2	12
12	2	7	2	4	4	2	7	2	12
12	2	7	4	2	2	4	7	2	12
12	9	2	7	7	7	7	2	9	12
12	9	9	2	2	2	2	9	9	12
12	12	12	12	12	12	12	12	12	12

- 4.3- Quel filtre est plus adapté? justifier?
- 5- Maintenant, on veut corriger le contraste de l'image I par l'égalisation de l'histogramme:
 - 5.1- Citer les 4 étapes principales pour réaliser l'égalisation de l'histogramme?
 - 5.2- Donner les nouvelles valeurs des pixels suivants: (2,4), (4,4), (8,8), (2,2), (11,10).

Exercice 02: (3 pts)

Soit les trois masques de filtres suivants:

$$h1 = X.$$
 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, $h2 = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$, $h3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

- 1- Nommer ces trois filtres ? Pour h1, quelle est la valeur appropriée de X ?
- 2- Lesquels parmi ces trois filtres utilisés pour la détection de contours ? Mentionner un avantage et un inconvénient de chaqu' un ?
- 3- Tracer le schéma de principe de la détection de contours en utilisant le gradient ?

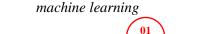
Année universitaire: 2019/2020

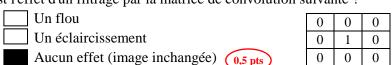
Option; M2 ESEM Enseignant: Y. BRIK

Corrigé-type de l'examen S3

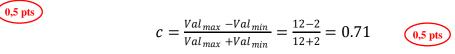
Matière: Vision Artificielle

Questions de cours : (07 pts)

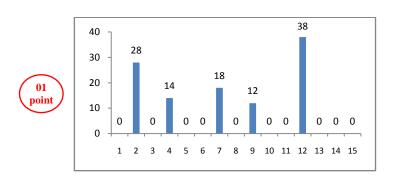

- 1. Les limitations d'un système visuel humain par rapport au système visuel artificiel sont :
 - problèmes d'échelle,
 - la haute résolution.
 - les gammes invisibles de la lumière,


la rapidité (plusieurs images par secondes),

- la continuité et la puissance de calcul.
- 2. La différence entre traditional programming et Machine learning :

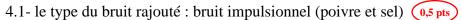


- 3. Lorsque on décale horizontalement un histogramme, la luminance qui sera modifiée. point
- 4. Deux techniques pour améliorer le contraste d'une image : Extension linéaire et égalisation de l'histogramme.
- 5. **Un avantage** d'un filtre fréquentiel passe-haut : Garder les hautes fréquences pour présenter les contours, **Un inconvénient** : Sensible au bruit. 0,5 pts
- 6. **L'échantillonnage** : la discrétisation des coordonnées de l'image (la résolution spatiale qui donne la taille de pixel). **La quantification** : la discrétisation des intensités de l'image (la résolution spectrale qui donne les niveaux de gris). 0.5 pts
- 7. Le filtre médian est un filtre non linéaire (**Oui**). 0,5 pts
- 8. L'opérateur LoG = filtre gaussien + la première dérivée d'une image (Non). 0.5 pts
- 9. L'extraction d'un contour nécessite toujours l'estimation de gradient (Non).
- 10. Quel est l'effet d'un filtrage par la matrice de convolution suivante ?



Exercice 01 : (10 pts)

1- Le contraste : qualité de la dynamique des intensités de l'image:


2- L'histogramme de l'image *I*:

3- Représentation de l'image binaire \mathbf{Ib} ($\mathbf{S} = 3$)

Sinon
$$\mathbf{Ib}(i,j) = 1$$

Sinon $\mathbf{Ib}(i,j) = 0$

										_
1	1	1	1	1	1	1	1	1	1	
1	1	1	0	0	0	0	1	1	1	
1	1	0	1	1	1	1	0	1	1	
1	0	1	1	1	1	1	1	0	1	
1	0	1	0	1	1	0	1	0	1	
1	0	1	1	1	1	1	1	0	1	(
1	0	1	0	1	1	0	1	0	1	
1	0	1	1	0	0	1	1	0	1	
1	1	0	1	1	1	1	0	1	1	
1	1	1	0	0	0	0	1	1	1	
1	1	1	1	1	1	1	1	1	1	

4.2- Filtrage du bruit rajouté:

, ,	Valeur	valeur	Filtre	Filtre	
Pixel	initiale	bruitée	moyenneur	médian	
<i>I</i> (2,2)	9	0	9	12	
<i>I</i> (10,10)	12	15	8	9	
I (8,4)	4	0	4	4	
I (6,9)	2	15	8	7	

02 points

4.3- Le filtre le plus adapté:

Erreur_{moy enneur} =
$$(9-9)^2 + (12-8)^2 + (4-4)^2 + (2-8)^2 = 52$$

Erreur_{médian} = $(9-12)^2 + (12-9)^2 + (4-4)^2 + (2-7)^2 = 43$

Tant que $Erreur_{m\acute{e}d} < Erreur_{moy}$, donc le filtre médian est le plus adapté.

5.1- Les 4 étapes de l'égalisation de l'histogramme sur l'image *I* sont :

A- Calcul de l'histogramme : 0,5 pts

Hist(I) =	0	0	28	0	14	0	0	18	0	12	0	0	38	0	0	0

B- Normalisation de l'histogramme : (0,5 pts)

HistN(I) =	0	0	$\frac{2}{1} = 0$	$\frac{14}{110}$	0	0	$\frac{18}{110}$	0	$\frac{12}{110}$	0	0	$\frac{38}{110}$	0	0	0

C- Calcul de l'histogramme cumulé : 0,5 pts

C(I) =	0	0	2 28	42	42	42	60	60	72	72	72	1	1	1	1
C(I) =	0	U	$\overline{1}$ $\overline{110}$	110	110	110	110	$\overline{110}$	110	110	110	1	1	1	1

D- Transformation de niveaux de gris de l'image :

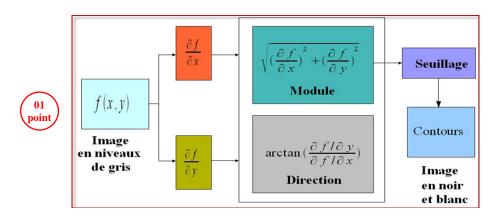
$$I_2(i,j) = C[I(i,j)] * 15$$
 0,5 pts

5.2- Les nouvelles valeurs des pixels après l'égalisation de l'histogramme:

Pixel	Valeur initiale dans	Nouvelle valeur dans				
Pixei	l'iamge I	l'iamge $m{I}_2$				
<i>I</i> (2,4)	2	4				
<i>I</i> (4,4)	4	6				
I (8,8)	7	8				
<i>I</i> (2,2)	9	10				
<i>I</i> (11,10)	12	15				

Exercice 02: (3 pts)

1-
$$h1 = X$$
. $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ est filtre de lissage **gaussien**. $\begin{bmatrix} 0.25 \\ points \end{bmatrix}$


$$h2 = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$
 est un filtre de **Sobel** selon y. $\begin{bmatrix} 0.25 \\ points \end{bmatrix}$

$$h3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 est un filtre de **Laplacian** en 8 directions. $\begin{bmatrix} 0.25 \\ points \end{bmatrix}$
La valeur de $X = \frac{1}{16}$. $\begin{bmatrix} 0.25 \\ points \end{bmatrix}$

2- Parmi ces trois filtres, Sobel et Laplacian sont utilisés pour la détection de contours:

01 point	Sobel	Laplacian
Avantage	 Absorbe considérablement le bruit Facile et rapide de leur traitement Plus robustes 	Aux points de contour, la deuxième dérivée est nulle (Contours précis)
Inconvénient	 Ils ne peuvent pas éliminer tout le bruit Les contours obtenus sont souvent assez larges Moins précis + Problème de seuillage 	- Sensible au bruit - Problème de seuillage

3- Le schéma de principe de la détection de contours en utilisant le gradient :

