MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Mohamed Boudiaf de M'sila

Faculté Technologie Département Mécanique Matière : Choix des matériaux

Niveau : Master 2 génie des matériaux

Session: Semestre 1

Année universitaire: 2019-2020.

Session janvier

Évaluation écrite

Exercice 1 (5pts)

Une poutre circulaire en flexion, notre objectif c'est de choisir un matériau à haute rigiditéléger pour ce système :

Objectif : barre à haute **rigidité-légère** Variables libre : le diamètre et le matériau

Contraintes : la longueur de la barre (L), la flèche(δ).

$$\delta = \frac{FL^3}{3EI}; I = \frac{\pi.D^4}{64}$$

• Déterminer l'indice de performance du système ?

Exercice 2 (5 pts)

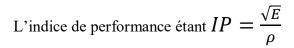
Déterminer l'indice de performance d'un arbre plein de section carrée, pour une torsion élastique, les objectifs étant la rigidité et la légèreté.

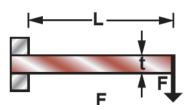
Fonction : doit supporter une charge de torsion

Objectif: minimiser la masse

Contrainte : l'angle de torsion (θ) provoqué par un couple donné T ne doit pas dépasser un certain niveau.

$$K = \frac{bh^3}{3} \left(1 - 0.58 \frac{b}{h} \right) \Rightarrow K = 0.14b^4 \; ; \; S_T = \frac{T}{\theta} \; ; S_T = \frac{K.G}{l} \; ; K^0 = J = \frac{\pi . r^4}{2}$$


$$\Phi_{\mathrm{T}}^{\mathrm{e}} = \frac{S_T}{S_T^0}; K_0 = \frac{\pi . r^4}{2} = \frac{A^2}{2\pi}; \quad G \approx \frac{3}{8} E$$


Exercice 3 (6 pts)

Une poutre circulaire en flexion, montrée sur la figure 1, notre objectif c'est de choisir un matériau à haute rigidité-léger pour ce système :

Objectif : barre à haute **rigidité-légère** Variables libre : le diamètre et le matériau

Contraintes : la longueur de la barre (L), la flèche(δ).

Matériaux	E Gpa	Densité Mg/m³	
Acier	200	7,8	
Bois	16	0,8	
Béton	50	2,8	
Aluminium	69	2,7	
CFRP	200	1,6	

- Calculer les indices de performance de cinq matériaux et qu'il est le meilleur matériau ?
- Tracer les lignes d'équiperfomance des bois et CFRP sur le diagramme Ashby (Ε-ρ).

Question de cours

- Quels sont les classes des matériaux ? 2 pts
- Pourquoi y a -t- il une nécessité d'optimiser les choix des matériaux ? 2 pts

Chargé de matière H.ZEGGANE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Mohamed Boudiaf de M'sila

Faculté de Technologie Département mécanique Matière : Choix des matériaux

Niveau : Master 2 génie des matériaux

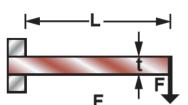
Session: Semestre 1

Année universitaire: 2019-2020.

Session janvier

Corrigé type de l'évaluation écrite

Exercice 1 (5pts)


Une poutre circulaire en flexion, montrée sur la figure 1, notre objectif c'est de choisir un matériau à haute rigidité-léger pour ce système :

Objectif : barre à haute **rigidité-légère** Variables libre : le diamètre et le matériau

Contraintes : la longueur de la barre (L), la flèche(δ).

$$\delta = \frac{FL^3}{3EI}; I = \frac{\pi.D^4}{64}$$

• Déterminer l'indice de performance de système ?

Solution

Fonction : Barre en flexion (de section A). **Objectif :** haute rigidité, Masse minimale : m

$$m = \rho.A.L \Rightarrow m = \rho.\frac{\pi.D^2}{4}.L$$

m: masse (kg).

ρ : poids volumique (kg/m³).
l : longueur de la barre (m).
D : diamètre de la barre (m).

Contraintes:

• Longueur *L* de la barre imposée. **Variables libres** : le diamètre de la barre (D).

Sachant

$$\delta = \frac{FL^3}{3EI}$$

$$m = \rho.\frac{\pi.D^2}{4}.L$$

La variable libre étant (D) et on a :

$$F = \frac{3. E. I. \delta}{L^{3}}$$
$$F = \frac{3. E. \pi. D^{4}. \delta}{64. L^{3}}$$

$$D^2 = \left(\frac{64.F.L^3}{3.E.\pi.\delta}\right)^{1/2}$$
 1pt

En remplace la valeur du diamètre dans l'équation (6) : La fonction performance (m) est donnée par ce qui suit

$$m = \rho \cdot \frac{\pi}{4} \cdot L \cdot \left(\frac{64.F.L^3}{3.E.\pi.\delta}\right)^{1/2}$$

$$m = \left(\frac{\pi}{4} \cdot \frac{8}{\sqrt{3\pi}}\right) \cdot \left(\frac{F}{\delta}\right)^{1/2} \cdot L^{\frac{5}{2}} \cdot \left(\frac{\rho}{\sqrt{E}}\right)$$
 1pt

Minimiser la masse revient à maximiser $\left(\frac{\sqrt{E}}{\rho}\right)$ 1pt

Exercice 2:5 pts

Déterminer l'indice de performance d'un arbre plein de section carrée, pour une torsion élastique, les objectifs étant la rigidité et la légèreté.

Fonction : doit supporter une charge de torsion

Objectif: minimiser la masse

Contrainte : l'angle de torsion (θ) provoqué par un couple donné T ne doit pas dépasser un certain niveau.

Solution

Pour une section carrée, le moment de torsion (K) est donné par la formule suivante :

$$K = \frac{bh^3}{3} \left(1 - 0.58 \frac{b}{h} \right) \Rightarrow K = 0.14b^4$$
 Puisque b=h.
$$\Phi_{\rm T}^{\rm e} = \frac{2\pi K}{A^2} \Rightarrow K = \Phi_{\rm T}^{\rm e}. \frac{A^2}{2\pi}$$
 0.5 pt

Sachant que:

$$S_T = \frac{K.G}{l} \Rightarrow S_T = \frac{\Phi_T^e \cdot \frac{A^2}{2\pi} \cdot G}{l} \Rightarrow S_T = \frac{\Phi_T^e \cdot A^2 \cdot G}{2\pi l} \Rightarrow A = \left(\frac{S_T \cdot 2\pi l}{\Phi_T^e G}\right)^{\frac{1}{2}}$$
 2 pts

L'objectif étant de minimiser la masse, donc la fonction performance est :

$$m = \rho. l. A$$

$$m = \rho. l. \left(\frac{S_T.2\pi l}{\Phi_T^e G}\right)^{\frac{1}{2}} \Rightarrow m = (S_T.2\pi)^{\frac{1}{2}}.l^{3/2}.\frac{\rho}{\left(\Phi_T^e G\right)^{\frac{1}{2}}}$$
 1.5 pts

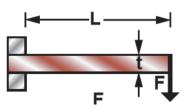
Minimiser la masse revient à minimiser le terme suivant :

$$IP = \frac{(\Phi_{\rm T}^{\rm e}G)^{1/2}}{\rho}$$

Si

$$G \approx \frac{3}{8} E$$

$$m = (\frac{8.S_T \cdot 2\pi}{3})^{\frac{1}{2}} \cdot l^{3/2} \cdot \frac{\rho}{(\Phi_T^e E)^{\frac{1}{2}}}$$


$$IP = \frac{(\Phi_T^e E)^{1/2}}{\rho}$$
1pt

Exercice 3 5 pts

Une poutre circulaire en flexion, montrée sur la figure 1, notre objectif c'est de choisir un matériau à haute rigidité-léger pour ce système :

Objectif : barre à haute **rigidité-légère** Variables libre : le diamètre et le matériau

Contraintes : la longueur de la barre (L), la flèche(δ).

L'indice de performance étant
$$IP=\frac{\sqrt{E}}{\rho}$$
 Les indices de performances Chaque IP 0.25 pt

Mtériaux	E Gpa	Densité Mg/m3	IP
Acier	200	7,8	1,81
Bois	16	0,8	5,00
Béton	50	2,8	2,53
Aluminium	69	2,7	3,08
CFRP	200	1,6	8,84

Le CFRP est le matériau le plus performant mais coûte cher, par conséquent le bois est le meilleur choix. 0.75pt

L'indice de performance étant
$$IP = \frac{\sqrt{E}}{\rho}$$

$$IP = \frac{\sqrt{E}}{\rho} \Longrightarrow \rho. IP = \sqrt{E} \Longrightarrow \log(\rho) + \log(IP) = \frac{1}{2}\log(E)$$

$$\log(E) = 2\log(\rho) + 2\log(IP)$$

Cette équation de type :

$$Y = 2X + B$$

Pour CERFP:

E = 200 GPa $\rho = 1.6 \text{ Mg/m3}$

Coordonnées à l'origine $\rho = 0.1 \ Mg/m^3$ Ip = 8.84

$$\log(E) = 2\log(\rho) + 2\log(IP)$$

$$E = 10^{\log(\rho) + 2\log(IP)}$$

$$E = 10^{\log(0.1) + 2\log(8.84)}$$

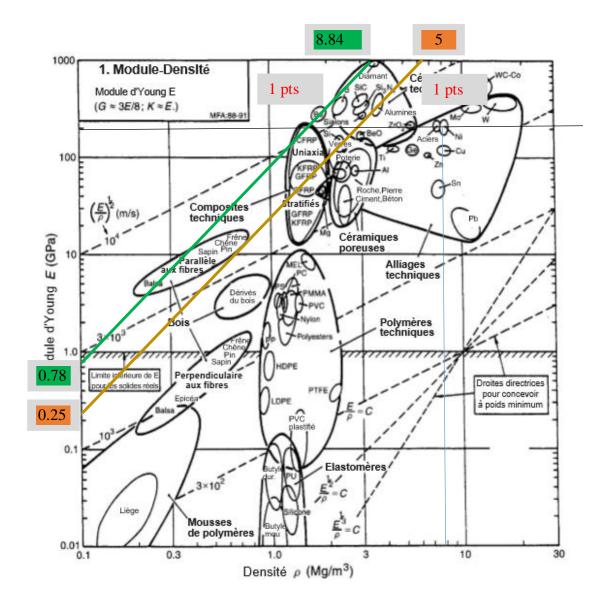
$$E = 0.78$$

1pt

1pt

Pour le bois :

E = 16 GPa $\rho = 0.8 \text{ Mg/m3}$


Coordonnées à l'origine $\rho = 0.1 \ Mg/m^3$ Ip = 5

$$\log(E) = 2\log(\rho) + 2\log(IP)$$

$$E = 10^{\log(\rho) + 2\log(IP)}$$

$$E = 10^{\log(0.1) + 2\log(5)}$$

$$E = 0.25$$

Questions de cours

1- Quels sont les classes des matériaux ? 2 pts

Les métaux (0.5)

Les polymères (0.5)

Les céramiques (0.5)

Les composites (0.5)

2- Pourquoi y a -t- il une nécessité d'optimiser les choix des matériaux ?

Problématique 1 1pt

Nombreux matériaux, nombreuses nuances et variation des propriétés par effet de procédés (mise en œuvre, assemblage, traitement).

Exemple:

- Al 800-200; Al cuivre (\(\neq \%\)).
- Acier.
- **♣** Grand nombre de procédés de fabrication.
- Possibilité d'intégrer des fonctions de la pièce dans le matériau.

Exemple:

- Matériau non conducteur le rendre conducteur.
- Fibre de verre + résine époxy, rajoute des particules métalliques ou grillage métallique pour ajouter une fonction de conduction d'électricité.
- Développement de nouveaux matériaux et procédés.

Donc la nécessité d'utiliser des bases de données mises à jour sur l'ensemble des propriétés et procédés.

Problématique 2 1pt

- ♣ On a des matériaux à sélectionner, des procédés à sélectionner → quel est le critère de choix pour un meilleur choix.
- Trouver le critère de choix pertinent pour sélectionner les meilleurs candidats matériaux et procédés.
- **↓** Tenir compte de l'interaction matériaux / procédés/ forme.
 - Incompatibilité de certains matériaux entre eux (exemple : corrosion par effet de piles anode et cathode)
- Restriction des formes et matériaux selon le procédé utilisé.
- Le procédé peut changer les propriétés des matériaux (exemple : soudure à l'état liquide).

Donc nécessité d'optimiser le choix matériaux /procédés en tenant compte de leurs interactions (formes, matériaux et procédés). Un outil de croisement de données est nécessaire.