

جامعة محمد بوضياف (المسيلة) - كلية التكنولوجيا

Université Mohamed Boudiaf de M'sila – Faculté de Technologie

قسم الإلكترونيك

Département d'Electronique

EXAMEN DU 2ème SEMESTRE

MATIERE: DISPOSITIFS PHOTOVOLTAIQUES
MASTER (M1): MICRO-ELECTRONIQUE

15/10/2020

	(4)	
Nom & Prénom :		*
	Niota .	

Cochez les bonnes réponses

- 1. La valeur de l'irradiance solaire correspondant à la région du visible (0.38 μ m < λ < 0.78 μ m) est de :
 - a) 456W/m² b) 556 W/m² c) 656 W/m² d) 756 W/m² e) Aucune réponse n'est juste

a	b	C	d	е
	1			T

(Note: $f_{0-0.38} = 0.064$ et $f_{0-0.78} = 0.544$)

- 2. Que représente l'irradiance solaire correspondant au visible par rapport à la constante solaire ?
 - a) ≅38% b) ≅48% c) ≅58% d) ≅68% e) Aucune réponse n'est juste

а	b	C	d	е
				-

- 3. La constante solaire se calcule en utilisant la formule suivante :
 - a) $G_{SC} = \frac{4\pi r_S \int_0^\infty G_{S\lambda} d\lambda}{4\pi d_{Se}}$ b) $G_{SC} = \frac{4\pi r_S \int_0^\infty G_{S\lambda} d\lambda}{4\pi \left(\frac{d_{SE}}{2}\right)^2}$ c) $G_{SC} = \frac{4\pi r_S^2 \int_0^\infty G_{S\lambda} d\lambda}{4\pi d_{Se}^2}$ d) Aucune réponse n'est

juste. (Note: $\int_0^\infty G_{s\lambda} d\lambda = 6.311 \, 10^7$, $r_s = 7 \, 10^8 m$)

а	b	C	d
2.00			

- 4. La fraction de l'irradiance solaire spectrale f $(\lambda_1 \lambda_2)$ se calcule comme suit :
 - a) $\int_{\lambda_1}^{\lambda_2} G_{s\lambda} d\lambda$ b) $\frac{\int_{\lambda_1}^{\lambda_2} G_{s\lambda} d\lambda}{\sigma T^4}$ c) $\frac{\int_{\lambda_1}^{\lambda_2} G_{s\lambda} d\lambda}{\sigma T}$ d) $\frac{1}{\sigma T^4} \left(\int_0^{\lambda_2} G_{s\lambda} d\lambda \int_0^{\lambda_1} G_{s\lambda} d\lambda \right)$ e) Aucune réponse n'est juste

a	b	C	d	е
		-	-	

- 5. La valeur réelle de l'irradiance hors-atmosphère se calcule en utilisant la formule suivante :
 - a) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{2\pi}{365} (N_j + 284) \right)$ b) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{360}{365} N_j \right)$

 $G_{sc}\left(1+0.033\cos\frac{2\pi}{365}(N_j+284)\right)\cos\theta z \, \mathbf{d}) \, G_o = G_{sc}\left(1+0.033\cos\frac{2\pi}{365}N_j\right) \, \mathbf{e}) \, G_o = G_{sc}\left(1+0.033\sin\frac{2\pi}{365}N_j\right) \, \mathbf{e}) \, G_o = G_{sc}\left(1+0.033\sin\frac{2\pi}{365}N_j\right) \, \mathbf{e}$

 $0.033\cos\frac{2\pi}{365}N_j$ f) Aucune réponse n'est juste

а	b	C	d	е	f
	1		1 .		1

6. L'irradiance solaire réelle hors-atmosphère peut prendre des valeurs supérieures à la constante solaire : a) Oui b) Non

а	b

- 7. La hauteur du soleil est égale à :
- a) $\theta_z 90^\circ$ b) $90^\circ \theta_z$ c) $\cos \theta_z$ d) $\sin \theta_z$ e) Aucune réponse n'est juste

a	b	С	d	е

- 8. L'expression approximative de AM (Air-Mass) est la suivante : a) $AM = \frac{1}{\cos h}$ b) $AM = \frac{1}{\sin h}$ c) $AM = \frac{1}{\cos \theta_i}$ d) $AM = \frac{1}{\cos \theta_z}$ e) Aucune réponse

n'est juste

а	b	С	d	е

- 9. Si l'angle zénithal est de 60°, la valeur approximative de AM sera égale à :
 - a) 0.5 b) 2
- c) 1
- d) 2
- e) 1.5 f) Aucune réponse n'est juste

a	b	С	d	е	f

- 10. La valeur de la constante solaire est égale à:

 - a) 1357 W/m² b) 1376W/m² c) 1367W/m² d) 1375 w/m² e) Aucune réponse n'est juste

a	b	С	d	е
				T

- 11. L'angle horaire du lever du soleil \mathbf{w}_{sr} pour un plan horizontal correspond à :
 - a) $\theta_z=0^\circ$, b) $\theta_z=90^\circ$, c) $\theta_z=45^\circ$, d) Aucune réponse n'est juste

а	b	С	d

- 12. Les composantes du rayonnement solaire au sol /plan horizontal sont :
 - a) Direct + Diffus + Réfléchi b) Direct + Diffus+ Albédo c) Direct + Diffus d) Direct + Réfléchi e) Aucune réponse n'est juste

а	b	C	d	е
		1		
		1		

- 13. Le direct/plan incliné se calcule en utilisant la formule suivante : a) $B_t = \frac{\cos \theta i}{\cos \theta z} \ G_h$ b) $B_t = \frac{\sin h}{\cos \theta i} B_h$ c) $B_t = \frac{\cos \theta i}{\cos \theta z} B_h$ d) $B_t = \frac{\cos \theta i}{\sin h} B_h$ e)Aucune réponse

а	b	С	d	е

- 14. Si l'irradiance d'un corps noir est de 7.25 10⁴ Wm², alors la température de sa surface est
 - a) 963 K b) 1063 K c) 1163 K d) 1263 K e)Aucune réponse n'est juste

a	b	C	d	е
	1			

جامعة محمد بوضياف (المسيلة) - كلية التكنولوجيا

Université Mohamed Boudiaf de M'sila – Faculté de Technologie

قسم الإلكترونيك

Département d'Electronique

EXAMEN DU 2ème SFMFSTRF

MATIERE: DISPOSITIFS PHOTOVOLTAIQUES MASTER (M1): MICRO-ELECTRONIQUE

15/10/2020

Corrige type Note: Nom & Prénom:

Cochez les bonnes réponses

- 1. La valeur de l'irradiance solaire correspondant à la région du visible (0.38 μ m < λ < 0.78 μ m) est de :
 - a) 456W/m² b) 556 W/m² c) 656 W/m² d) 756 W/m² e) Aucune réponse n'est juste

a	b	С	d	е
				_

(Note: $f_{0-0.38} = 0.064$ et $f_{0-0.78} = 0.544$)

- 2. Que représente l'irradiance solaire correspondant au visible par rapport à la constante solaire ?
 - a) \cong 38% b) \cong 48% c) \cong 58% d) \cong 68% e) Aucune réponse n'est juste

a	b	С	d	е
	X			

3. La constante solaire se calcule en utilisant la formule suivante

a)
$$G_{SC} = \frac{4\pi r_s \int_0^\infty G_{S\lambda} d\lambda}{4\pi d_{Se}}$$
 b) $G_{SC} = \frac{4\pi r_s \int_0^\infty G_{S\lambda} d\lambda}{4\pi \left(\frac{d_{Se}}{2}\right)^2}$ c) $G_{SC} = \frac{4\pi r_s^2 \int_0^\infty G_{S\lambda} d\lambda}{4\pi d_{Se}^2}$ d) Aucune réponse n'est

juste. (Note: $\int_0^\infty G_{s\lambda} d\lambda = 6.311 \, 10^7$, $r_s = 7 \, 10^8 m$)

а	b	С	d
		X	

4. La fraction de l'irradiance solaire spectrale f $(\lambda_1 - \lambda_2)$ se calcule comme suit :

a)
$$\int_{\lambda_1}^{\lambda_2} G_{s\lambda} d\lambda$$
 b) $\frac{\int_{\lambda_1}^{\lambda_2} G_{s\lambda} d\lambda}{\sigma T^4}$ c) $\frac{\int_{\lambda_1}^{\lambda_2} G_{s\lambda} d\lambda}{\sigma T}$ d) $\frac{1}{\sigma T^4} \left(\int_0^{\lambda_2} G_{s\lambda} d\lambda - \int_0^{\lambda_1} G_{s\lambda} d\lambda \right)$ e) Aucune réponse n'est juste

a	b	С	d	е
	V		~	

5. La valeur réelle de l'irradiance hors-atmosphère se calcule en utilisant la formule suivante :

a)
$$G_o = G_{sc} \left(1 + 0.033 \cos \frac{2\pi}{365} (N_j + 284) \right)$$
 b) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{360}{365} N_j \right)$ c) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{2\pi}{365} N_j \right)$ c) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{2\pi}{365} N_j \right)$ e) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{2\pi}{365} N_j \right)$ e) $G_o = G_{sc} \left(1 + 0.033 \cos \frac{2\pi}{365} N_j \right)$ f) Aucune réponse n'est juste

a	b	С	d	е	f
	X			X	

6. L'irradiance solaire réelle hors-atmosphère peut prendre des valeurs supérieures à la constante solaire: a) Oui b) Non

- 7. La hauteur du soleil est égale à :
- a) $\theta_z 90^\circ$ b) $90^\circ \theta_z$ c) $\cos \theta_z$ d) $\sin \theta_z$ e) Aucune réponse n'est juste

а	b	С	d	е	
	X				

- 8. L'expression approximative de AM (Air-Mass) est la suivante :

- a) $AM = \frac{1}{\cos h}$ b) $AM = \frac{1}{\sin h}$ c) $AM = \frac{1}{\cos \theta_i}$ d) $AM = \frac{1}{\cos \theta_z}$ e) Aucune réponse

n'est juste

a	b	С	d	e
	X		· ×	

- 9. Si l'angle zénithal est de 60°, la valeur approximative de AM sera égale à :
 - a) 0.5
- **b)** 2
- c) 1
- d) 2
- e) 1.5 f) Aucune réponse n'est juste

а	b	С	d	е	f
* 7	7	9	X		

- 10. La valeur de la constante solaire est égale à:
- - a) 1357 W/m² b) 1376W/m² c) 1367W/m² d) 1375 w/m² e) Aucune réponse n'est juste

а	b	С	d	е	
		×			

- 11. L'angle horaire du lever du soleil w_{sr} pour un plan horizontal correspond à :
 - a) $\theta_z=0^\circ$, b) $\theta_z=90^\circ$, c) $\theta_z=45^\circ$, d) Aucune réponse n'est juste

а	b -	č	d
	-		

- 12. Les composantes du rayonnement solaire au sol /plan horizontal sont :
 - a) Direct + Diffus + Réfléchi b) Direct + Diffus + Albédo c) Direct + Diffus d) Direct + Réfléchi e) Aucune réponse n'est juste

а	b	С	d	е
-		>		

- 13. Le direct/plan incliné se calcule en utilisant la formule suivante :
 - a) $B_t = \frac{\cos \theta i}{\cos \theta z} \ G_h$ b) $B_t = \frac{\sin h}{\cos \theta i} B_h$ c) $B_t = \frac{\cos \theta i}{\cos \theta z} B_h$ d) $B_t = \frac{\cos \theta i}{\sin h} B_h$ e) Aucune réponse

a ˈ	b	c.	d	е
			X	

- 14. Si l'irradiance d'un corps noir est de 7.25 10⁴ Wm², alors la température de sa surface est
 - a) 963 K b) 1063 K c) 1163 K d) 1263 K e) Aucune réponse n'est juste

а	b	C	d	е
20	\times			