Examen

Questions: (Vrai ou Faux) (6 points)
-l'estimation du niveau du clutter du détecteur SO-CFAR est basée sur le classement des échantillons
par ordre croissant de leurs amplitudes. ()
-l'estimation du niveau du clutter du détecteur OS-CFAR est basée sur la moyenne arithmétique
minimale des deux demi-fenêtres en amont et en aval de la CST. ()
-l'estimation du niveau du clutter du détecteur GO-CFAR est basé sur la moyenne géométrique
maximale des deux demi-fenêtres en amont et en aval de la CST. ()
-l'estimation du niveau du clutter du détecteur CA-CFAR est basé sur la moyenne géométrique de
toutes les cellules de référence. ()
-les performances du détecteur CA-CFAR sont dégradées dans le cas d'un clutter Gaussien.
(·······)
-les performances du détecteur SO-CFAR sont dégradées dans le cas où une seule demi-fenêtre
contient des cibles interférentes. ()
-les performances du détecteur GO-CFAR sont dégradées dans le cas de présence des cibles
interférente <mark>s. ()</mark>
-dans le cas d'un clutter homogène les performances de détection du détecteur CA-CFAR est meilleurs
que les dét <mark>e</mark> cteurs GO-CFAR et SO-CFAR. ()
Exercice01: (6 points)
Considérons le processus aléatoire $X(t)$ définie par $X(t) = A\cos(2\pi ft)$ où A est une constante et f une variable aléatoire uniformément distribuée sur $[0, 1]$. Trouver la moyenne et l'autocorrélation du processus aléatoire $X(t)$. Est ce que $X(t)$ est stationnaire au sens large ?
······································

Université Mohamed Boudiaf-M'Sila Faculté de Technologie	M1 Systèmes des télécommunications
Département d'Electronique	Module: Techniques radars
Exercice02: (6 points)	
Soit $x_1, x_2,, x_N$, N observations indépendantes et identique	ement distribuées (IID) selon la distribution
Gaussienne centrée. La fonction de densité de probabilité (
tonetion de densité de probabilité (.	i Dr) de la distribution Gaussienne centree
de moyenne nulle et de variancce σ^2 est donnée par: $f(x)$ =	$=\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{x^2}{2\sigma^2}\right)$
-Trouver l'estimé de la variance $\hat{\sigma^2}$ utilisant la méthode de r	maximum de vraisemblance (MLE).
······	
······	
······	
······	
······································	
······································	
<mark></mark>	***************************************
······································	
······································	
······································	
······	
•••••••••••••••••••••••••••••••••••••••	
terit in	Bon courage

 $\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos\alpha\sin\beta$ $\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$

Corrigé type techniques radars M1 STLC

Questions: (Vrai ou Faux) (6 points)

- -l'estimation du niveau du clutter du détecteur SO-CFAR est basée sur le classement des échantillons par ordre croissant de leurs amplitudes. (Faux)
- -l'estimation du niveau du clutter du détecteur OS-CFAR est basée sur la moyenne arithmétique minimale des deux demi-fenêtres en amont et en aval de la CST. (Faux)
- -l'estimation du niveau du clutter du détecteur GO-CFAR est basé sur la moyenne géométrique maximale des deux demi-fenêtres en amont et en aval de la CST. (Faux)
- -l'estimation du niveau du clutter du détecteur CA-CFAR est basé sur la moyenne géométrique de toutes les cellules de référence. (Faux)
- -les performances du détecteur CA-CFAR sont dégradées dans le cas d'un clutter Gaussien. (Faux)
- -les performances du détecteur SO-CFAR sont dégradées dans le cas où une seule demi-fenêtre contient des cibles interférentes. (Faux)
- -les performances du détecteur GO-CFAR sont dégradées dans le cas de présence des cibles interférentes. (Vrai)
- -dans le cas d'un clutter homogène les performances de détection du détecteur CA-CFAR est meilleurs que les détecteurs GO-CFAR et SO-CFAR. (Vrai)

Exercice01: (6 points)

Calcul de E[X(t)] et de R_{yy}

$$E[X(t)] = \int_{0}^{1} X(t)p(f)df = \int_{0}^{1} A\cos(2\pi f t)df = \frac{A}{2\pi t} [\sin(2\pi f t)]_{0}^{1} = \frac{A\sin(2\pi t)}{2\pi t} = A\sin c(2\pi t)$$

$$R_{XX}(t+\tau,t) = E[X(t+\tau)X(t)] = \int_{0}^{1} A^{2}\cos(2\pi f t + 2\pi f \tau)\cos(2\pi f t)df$$

Comme : $cos(\alpha + \beta) + cos(\alpha - \beta) = 2 cos \alpha cos \beta$

Alors:

$$R_{XX}(t+\tau,t) = \frac{A^{2}}{2} \int_{0}^{1} \left[\cos(2\pi(2t+\tau)f) + \cos(2\pi f\tau) \right] df = \frac{A^{2}}{2} \left[\frac{1}{2\pi(2t+\tau)} \sin(2\pi(2t+\tau)f) + \frac{1}{2\pi\tau} \sin(2\pi f\tau) \right]_{0}^{1}$$

$$= \frac{A^{2}}{2} \left[\frac{\sin(2\pi(2t+\tau))}{2\pi(2t+\tau)} + \frac{\sin(2\pi\tau)}{2\pi\tau} \right] = \frac{A^{2}}{2} \left[\sin c \left(2\pi(2t+\tau) \right) + \sin c \left(2\pi\tau \right) \right]$$

- Le processus aléatoire X(t) est non stationnaire au sens large car E[X(t)] et $R_{XX}(t+\tau,t)$ dépendent du temps t.

Exercice02: (6 points)

La fonction de vraisemblance est :

$$p(x_1, x_2, ..., x_N / \sigma) = \prod_{n=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{x_n^2}{2\sigma^2}\right)$$

appliquant la fonction logarithmique on trouve:

$$L(\mu, \sigma) = -\frac{1}{2} N \log(2\pi\sigma^2) - \sum_{n=1}^{N} \frac{x_n^2}{2\sigma^2}$$

Pour trouver les estimés $\hat{\sigma^2}$, on maximise la fonction de vraisemblance par la dérivation par rapport au paramètre désiré.

MLE de la variance σ^2 est :

$$\hat{\sigma^2} = \frac{1}{N} \sum_{n=1}^{N} x_n^2$$